Index du Forum


 
 Index du ForumFAQRechercherS’enregistrerConnexion

:: théorèmes en mathématiques ::

 
Poster un nouveau sujet   Répondre au sujet     Index du Forum -> Math -> Math
Sujet précédent :: Sujet suivant  
Auteur Message
maroua
Administrateur

Hors ligne

Inscrit le: 29 Oct 2011
Messages: 4
Féminin
Point(s): 22
Moyenne de points: 5,50

MessagePosté le: Dim 6 Nov - 00:52 (2011)    Sujet du message: théorèmes en mathématiques Répondre en citant

théorème de la division :L'ensemble étudié dans cet article, noté Z, est celui des nombres entiers, qu'ils soient positifs ou négatifs. L'existence de nombres négatifs offre un avantage trop puissant pour que l'on puisse aisément s'en passer. Initialement, il introduit une petite complexité, comment définir la division euclidienne sur Z ? Il est nécessaire de modifier un peu le résultat déjà connu pour les entiers positifs.

Division euclidienne pour les nombres entiers — Soit a et b deux nombres entiers tel que b soit non nul. Il existe au moins un couple d'entiers (qr) tel que a soit égal à b.q + r et tel que r soit en valeur absolue strictement plus petit que b
Par rapport à la division euclidienne dans les nombres entiers positifs, une propriété a été perdue, l'unicité de la solution n'est maintenant plus toujours vraie. Considérons l'entier 10 que l'on souhaite diviser par 3, il peut s'écrire de deux manières : 3x3 + 1 ou encore 3x4 + (-2). Autoriser les nombres négatifs, en particulier pour le reste, impose d'admettre deux solutions au lieu d'une, ce qui s'avère n'être que peu gênant. La démonstration de ce résultat est proposée dans l'article détaillé.Sous-ensembles stables :
L'objectif de ce paragraphe est la recherche des sous-ensembles de Z qui sont à la fois non vides et stables pour l'addition et la soustraction. Cette démarche, consistant à étudier la structure de l'ensemble Z, est une des idées fondatrices de l'arithmétique au sens moderne du terme. Dans un contexte plus sophistiqué, ces sous-ensembles peuvent être vus comme des sous-groupes ou desidéaux. L'usage de ces concepts s'avère néanmoins inutile pour une étude qui se limite à l'arithmétique élémentaire.

Sous ensembles stables — Soit M un sous-ensemble non vide de Z et stable pour l'addition, il existe un entier m tel que M soit égal à l'ensemble des multiples de m
Théorème fondamental de l'arithmétiqueThéorème de Bachet-Bézout :Une identité permet de venir à bout de toute équation diophantienne du premier degré. Une forme faible de l'identité est la suivante :
Identité de Bachet-Bézout — Deux nombres entiers a et b sont premiers entre eux si, et seulement si, il existe deux entiers m et n tel que :

Cette forme de l'identité de Bachet-Bézout est plus faible que celle de l'article détaillé et cela à deux titres. Tout d'abord, elle ne traite que du cas où a et b sont premiers entre eux, ensuite l'article détaillé donne une méthode effective pour trouver les valeurs de m et n, ce qui n'est pas le propos de ce paragraphe.
Pour démontrer cette identité, on peut remarquer que l'ensemble M des nombres de la forme a.m + b.n, si m et n décrivent tous les entiers, est non vide et stable pour l'addition et la multiplication. La proposition précédente montre l'existence d'un entier m tel que M soit l'ensemble des multiples de m. Si a et b sont premiers entre eux, l'entier m, qui divise a et b, car ce sont des éléments de M, est nécessairement égal à 1 ou -1. Les multiples de m forment l'ensemble Z tout entier, qui contient 1, ce qui montre l'existence d'une solution à l'identité.
Si a et b comportent un diviseur commun c différent de 1 et de -1, l'entier a.m + b.n est aussi un multiple de c et ne peut être égal à 1, qui lui ne l'est pas.
Lemme d'Euclide
Une application importante de l'identité du dernier paragraphe est le lemme d'Euclide :

Lemme d'Euclide — Si un nombre premier p divise un produit a.b de deux nombres entiers, il divise soit a soit b
Ce lemme fait apparaitre des nombres essentiels en arithmétique, les nombres premiers. Ce sont des nombres strictement positifs qui n'ont comme diviseurs positifs qu'eux-mêmes et un. Le mathématicien Paul Erdös disaient d'eux : « Un nombre premier est un nombre qui ne se casse pas quand on le laisse tomber par terre. »3. Ce lemme est une étape pour démontrer le théorème fondamental de l'arithmétique.Sa démonstration fait appel à l'identité précédente et est démontrée dans l'article détaillé.
Théorème fondamental de l'arithmétiqueSi l'on considère un entier quelconque, on peut l'écrire sous la forme ε.a, où ε désigne soit 1 où -1 et a un nombre entier positif. Si a n'est pas premier, il se décompose en un produit c.b de nombres entiers positifs, opération que l'on peut recommencer. On finit par trouver une décomposition en facteurs premiers :
Théorème fondamental de l'arithmétique — Un nombre entier se décompose de manière unique en un produit comportant un terme ε égal à 1 ou -1 et les autres facteurs sont des nombres premiers. 
Ce théorème est le résultat clé de l'arithmétique élémentaire, démontré dans l'article détaillé. Sous une forme plus ou moins générale, il est à la base de nombreux résultats qui se démontrent à l'aide de l'arithmétique élémentaire. En conséquence, la connaissance des nombres premiers s'avère essentielle. Cette connaissance est parfois difficile : leur répartition, par exemple, est en 2011 encore l'objet d'une des plus célèbres conjectures mathématiques (voir l'article hypothèse de Riemann qui dépasse de loin le cadre de l'arithmétique élémentaire). On dispose néanmoins aisément d'un premier résultat :
Nombre de nombres premiers — Il existe une infinité de nombres premiers. 
Pour s'en rendre compte, il suffit de considérer un ensemble fini F de nombres premiers et de montrer que cet ensemble ne les contient pas tous. Soit m la somme de 1 et du produit de tous les nombres de F. L'entier m n'est divisible par aucun élément de F, soit il est premier, soit il est divisible par un nombre premier qui n'est pas dans la liste. En conséquence F ne contient pas tous les nombres premiers. Dire qu'aucun ensemble fini ne contient tous les nombres premiers, c'est dire qu'il en existe une infinité (cf Théorème d'Euclide sur les nombres premiers).Conséquences directeThéorème de Wilson
Un exemple de résultat d'arithmétique qui peut se démontrer à l'aide des théorèmes énoncés dans cet article est maintenant appelé théorème de Wilson. Il a été démontré par le mathématicien arabedu xe siècle Alhazen4. Il s'énonce ainsi :

Théorème de Wilson — Un entier strictement positif p est un nombre premier si et seulement s'il divise (p - 1)! + 1, c'est-à-dire si, et seulement si : 
 
Petit théorème de Fermat
Pierre de Fermat est un mathématicien français du xviie siècle que s'est passionné pour l'arithmétique5. Le bagage mathématique disponible à son époque était, en arithmétique, plutôt plus faible que celui présenté ici, car l'usage des nombres négatifs était encore problématique. Il a établi le résultat suivant :

Petit théorème de Fermat — Si a est un entier non divisible par p tel que p est un nombre premier, alors a p-1 - 1 est un multiple de p
L'article détaillé présente une démonstration uniquement à l'aide des outils étudiés dans le cadre de cet article. Par delà l'élégance du résultat, il sert aussi de théorème pour démontrer d'autres résultats d'arithmétiques. Il est utilisé, par exemple pour une démonstration élémentaire du théorème des deux carrés de Fermat. Ce résultat stipule que si p est un nombre premier ayant pour reste 1 s'il est divisé par 4, alors l'équation X2 + Y2 = p admet toujours une solution.Test de primalité
Le petit théorème de Fermat est à la base de nombreux tests de primalité6. Pour en comprendre le principe appliquons sa forme naïve au cinquième nombre de Fermat, noté F5 et égal à 232 + 1, ou encore à 4 294 967 297. Fermat a toujours cru que ce nombre était premier, il écrit « ... je n'ai pu encore démontrer nécessairement la vérité de cette proposition »7. C'est la seule conjecture fausse que Fermat a émise[réf. souhaitée].
La méthode simple et brutale consiste à calculer le reste de la division de a(F5 - 1) - 1 par F5. Si le reste n'est pas nul, le nombre n'est pas premier. Avec deux astuces, les calculs sont beaucoup plus simples qu'il n'y paraît, choisissons a égal à 3. Son carré donne a2, égal à 9. Le carré de ce nombre donne 322, égal à 81, son carré est égal à 323 6  soit 561. Comme F5 - 1 est égal à 232, il suffit de 32 étapes pour conclure, ce qui est maintenant rapide avec les méthodes de calcul modernes.
La deuxième difficulté à résoudre est le caractère élevé des puissances successives, on finirait par devoir utiliser de très grands nombres qui imposent une écriture lourde des valeurs intermédiaires, ainsi 325 est égal à 1 853 020 188 851 841, alors que ce n'est que la cinquième valeur intermédiaire et qu'il faut en calculer 32. Il est néanmoins possible d'écrire ce nombre habilement, à l'aide d'une division euclidienne :

Ce qui importe, c'est le reste de la division euclidienne de 3(F5 - 1) - 1 et non pas la valeur de Q5. Ainsi, à l'étape d'après :

Il suffit de calculer le carré de R5 et d'opérer une division euclidienne de ce carré par F5 et on obtient :

Le calcul de Q6, et en règle générale de Qn où n est un entier qui va jusqu'à 32, est inutile. De plus, la suite des Rn ne dépasse jamais F5, ce qui empêche une explosion de chiffres significatifs à calculer. En 32 étapes, on trouve que le reste de la division euclidienne de 3(F5 - 1) - 1 par F5 est égal à 3 029 026 159 et non pas 0, le nombre F5 n'est pas premier. Euler utilise une méthode plus habile, elle exhibe effectivement les diviseurs8, sa méthode est exposée dans l'article Nombre de Fermat.


Revenir en haut
Publicité






MessagePosté le: Dim 6 Nov - 00:52 (2011)    Sujet du message: Publicité

PublicitéSupprimer les publicités ?
Revenir en haut
Montrer les messages depuis:   
Poster un nouveau sujet   Répondre au sujet     Index du Forum -> Math -> Math Toutes les heures sont au format GMT
Page 1 sur 1

 
Sauter vers:  

Index | Panneau d’administration | créer un forum | Forum gratuit d’entraide | Annuaire des forums gratuits | Signaler une violation | Conditions générales d'utilisation
Texno x0.3 © theme by Larme D'Ange 2006
Powered by phpBB © 2001, 2005 phpBB Group
Traduction par : phpBB-fr.com